COBRE

cobre aluminio cromo níquel-otros

Latones
Bronces
Conformado de las aleaciones de cobre

El cobre es uno de los metales de mayor uso, de apariencia metálica y color pardo rojizo. El cobre es uno de los elementos de transición de la tabla periódica, y su número atómico es 29.
Ya era conocido en épocas prehistóricas, y las primeras herramientas y enseres fabricados probablemente fueran de cobre. Se han encontrado objetos de este metal en las ruinas de muchas civilizaciones antiguas, como en Egipto, Asia Menor, China, sureste de Europa, Chipre (de donde proviene la palabra cobre), Creta y América del Sur. El cobre puede encontrarse en estado puro.

Aplicaciones y propiedades


Su punto de fusión es de 1.083 °C, mientras que su punto de ebullición es de unos 2.567 °C, y tiene una densidad de 8,9 g/cm3. Su masa atómica es 63,546.
Propiedades: elevada conductividad del calor y electricidad, gran resistencia a la corrosión, gran maleabilidad y ductilidad, además de su belleza. Debido a su extraordinaria conductividad, sólo superada por la plata, el uso más extendido del cobre se da en la industria eléctrica. Su ductilidad permite transformarlo en cables de cualquier diámetro, a partir de 0,025 mm. La resistencia a la tracción del alambre de cobre estirado es de unos 4200 kg/cm2. Puede usarse tanto en cables y líneas de alta tensión exteriores como en el cableado eléctrico en interiores, cables de lámparas y maquinaria eléctrica en general: generadores, motores, reguladores, equipos de señalización, aparatos electromagnéticos y sistemas de comunicaciones.
A lo largo de la historia, el cobre se ha utilizado para acuñar monedas y confeccionar útiles de cocina, tinajas y objetos ornamentales. En un tiempo era frecuente reforzar con cobre la quilla de los barcos de madera para proteger el casco ante posibles colisiones. El cobre se puede galvanizar fácilmente como tal o como base para otros metales. Con este fin se emplean grandes cantidades en la producción de electrotipos (reproducción de caracteres de impresión).
El cobre puro es blando, pero puede endurecerse posteriormente por deformación en fr+io. Las aleaciones de cobre, mucho más duras que el metal puro, presentan una mayor resistencia y por ello no pueden utilizarse en aplicaciones eléctricas, no obstante, su resistencia a la corrosión es casi tan buena como la del cobre puro y son de fácil manejo. Las dos aleaciones más importantes son el latón, una aleación con cinc, y el bronce, una aleación con estaño. A menudo, tanto el cinc como el estaño se funden en una misma aleación, haciendo difícil una diferenciación precisa entre el latón y el bronce. ambos se emplean en grandes cantidades; también se usa el cobre en aleaciones con oro, plata y níquel, y es un componente importante en aleaciones como el monel, el bronce de cañón y la plata alemana o alpaca.
El cobre forma dos series de compuestos químicos: de cobre (I), en la que el cobre tiene una valencia de 1, y de cobre (II), en la que su valencia es 2. Los compuestos de cobre (I) apenas tienen importancia en la industria y se convierten fácilmente en compuestos de cobre (II) al oxidarse por la simple exposición al aire. Los compuestos de cobre (II) son estables, algunas disoluciones de cobre tienen la propiedad de disolver la celulosa, por lo cual se usan grandes cantidades de cobre en la fabricación de rayón. También se emplea el cobre en muchos pigmentos, en insecticidas como el verde de Schweinfurt, o en fungicidas como la mezcla de Burdeos, aunque para estos fines está siendo sustituido ampliamente por productos orgánicos sintéticos.
Para tener buena conductividad térmica o eléctrica se debe usar cobre comercialmente puro; si se requiere mayor resistencia mecánica combinada con alta conductividad, se utilizan aleaciones que contienen zirconio u otros elementos. La aleación de cobre más barata es el latón con alto contenido de zinc y por lo común es el que se utiliza salvo cuando se requiere alta resistencia a la corrosión sometido a esfuerzo o a las propiedades mecánicas especiales de otras aleaciones. Cuando se desean buenas propiedades para trabajo en frío, tal como en operaciones de estirado profundo, o formado, se utiliza cuando debe realizarse mucho maquinado, en particular en el trabajo con máquinas automáticas para hacer tornillos.
Los bronces al estaño se utilizan para obtener una alta resistencia con buena ductilidad.
Las aleaciones de cobre con aluminio silicio o níquel son buenas por su resistencia a la corrosión.

Volver


LATONES


Las aleaciones útiles de cobre y zinc contienen hasta un 40 % de zinc, las que contienen del 30 al 35 % son las de mayor aplicación por ser baratas, muy dúctiles y fáciles de trabajar. Al disminuir el contenido de zinc, las aleaciones se aproximan cada vez más al cobre en sus propiedades y mejoran su resistencia a la corrosión. Se pueden presentar agrietamientos por esfuerzos producidos en la elaboración con latones de alto contenido de zinc pero raras veces en los de 15% de zinc, este es un agrietamiento espontáneo, que se produce por la exposición a la corrosión atmosférica en objetos de latón con grandes tensiones superficiales residuales. Puede evitarse por medio del recocido de alivio de tensiones de 246 a 276 grados centígrados, sin que se ablande la pieza. Debe observarse que las aleaciones susceptibles al agrietamiento espontáneo por esfuerzos producidos en la elaboración, aún cuando estén exentas de deformaciones internas, se agrietarán al ser expuestas a condiciones de corrosión bajo grandes esfuerzos de servicio.
Las aleaciones de zinc del 5 al 20% son de aplicación en operaciones de soldado con soldadura fuerte, a causa de no ser susceptibles al agrietamiento por esfuerzos producidos en la elaboración, debido a su color rojo y porque su alto punto de fusión es conveniente.
El trabajo en frío aumenta la dureza y la resistencia a la tracción y disminuye la ductilidad, medida por el alargamiento o reducción del área. El recocido por debajo de cierta temperatura no tiene prácticamente efecto alguno, por el intervalo(rango), de cristalización se produce un descenso rápido de la resistencia y un aumento de la ductilidad. En este punto, el efecto del trabajo en frío es eliminado casi en su totalidad.
El latón para resortes debe laminarse con una dureza que sea compatible con las operaciones subsiguientes de formado. Para artículos que requieren dobleces pronunciados, o para las operaciones de embutido profundo, debe usarse latón recocido.
La adición de plomo al latón lo hace de corte fácil y notablemente maquinable. Las adiciones del 0.75 al 1.25% de Estaño mejoran su resistencia a la corrosión. El Aluminio se agrega al latón para mejorar su resistencia a la corrosión, particularmente en las aplicaciones de tubos para condensadores. El bronce de manganeso es un latón complejo para el trabajo en caliente, de alta resistencia mecánica y de resistencia al desgaste por abrasivos. El latón naval se usa para árboles (flechas) en los barcos.
Se fabrican perfiles por extrusión de muchas aleaciones de cobre en una amplia variedad de formas. La extrusión es importante ya que muchos objetos, como piñones, articulaciones, brazos o ménsulas y cañones de cerraduras, pueden hacerse directamente a partir de varillas extruidas.

Volver

BRONCES


Los tres bronces al estaño más comunes contienen aproximadamente 5, 8 y 10% de estaño y se conocen como aleaciones A, C y D, respectivamente. Contienen por lo general, fósforo desde trazas hasta 0.40%, lo cual mejora sus cualidades para fundición o vaciado, los endurece un poco y ha dado origen al nombre conducente a Bronce Fosforoso; los bronces se caracterizan por sus propiedades elásticas.
Los Bronces al Aluminio, con 5 y 8% de Aluminio, son aplicables por su alta resistencia mecánica y su buena resistencia a la corrosión, y algunas veces a causa de su color dorado. Los que contienen 10% de aluminio y otras aleaciones con cantidades aún mayores son muy plasticas en caliente y tienen resistencia mecánica excepcionalmente alta, en particular después del tratamiento térmico.
Bronces al silicio, se fabrican cierto numero de aleaciones en las cuales el Silicio es el elemento principal de aleación, pero también contienen cantidades apreciables de Zinc, hierro, estaño o manganeso. Estas aleaciones son tan resistentes a la corrosión como el cobre y poseen excelentes propiedades para el trabajo en caliente combinadas con alta resistencia mecánica. Su característica sobresaliente es la soldabilidad por todos los métodos. Se usan mucho aleaciones parar soldadura al arco u oxiacetilénica en depósitos de agua caliente y para procesos químicos.
Los cuproníqueles y los metales llamados plata de níquel o plata alemana son de color blanco y no pierden su brillo en ambientes atmosféricos. Son extraordinariamente maleables y pueden trabajarse mucho sin recocerlos. Las aleaciones con níquel tienen las mejores propiedades a temperaturas elevadas de todas las aleaciones de cobre. volver

CONFORMADO DE LAS ALEACIONES DE COBRE


Fabricación.

Se obtienen en el estado de recocido y pueden soportar gran cantidad de trabajo en frío y se les puede dar la forma deseada por embutido profundo, rebordeado, rechazado, doblado y operaciones similares. El latón endurecido por trabajo en frío se ablanda a aproximadamente 593ºC.
Soldadura, generalmente por el método oxiacetilénico, con un suministro suficiente de calor para vencer su alta conductividad térmica. Puede soldarse por arco eléctrico, con la aplicación de la soldadura por arco metálico protegido y por arco metálico o de tungsteno con protección gaseosa. Todas las aleaciones de cobre, excepto las que tienen aluminio, pueden soldarse con soldadura blanda o de plata.
Maquinado, se realiza con facilidad con los métodos usuales y las herramientas estándar destinadas para el acero, pero con velocidades más altas. Para fines de maquinado, las aleaciones de cobre pueden dividirse en tres grupos:
-Grupo A: de estructura homogénea que son tenaces y dúctiles y forman una viruta larga y continua.
-Grupo B: exentas de plomo de estructura duplex, forman una viruta larga pero frágil.
-Grupo C: con adición de 0.5 a 3.0% de plomo.
Las aleaciones de cobre son altamente resistentes al ataque atmosférico y al agrietamiento. volver


Resistencia a la corrosión.


Todas las aleaciones de cobre son altamente resistentes al ataque atmosférico, pero para la exposición a la intemperie son preferibles las que contienen mas de 80% de cobre (o el cobre mismo) a causa de su resistencia al agrietamiento por esfuerzos introducidos en la elaboración.

cobre aluminio cromo níquel-otros